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ABSTRACT 

 

The objective of this thesis is the targeted design of new wear resistant materials through the 

development of analytic frameworks.  The building of databases on wear data, whether through 

calculation or experiment, is a very time-consuming problem with high levels of data 

uncertainty.  For these reasons of small data size and high data uncertainty, the development 

of a hybrid data analytic framework for accelerating the selection of target materials is needed.  

In this thesis, the focus is on binary ceramic compounds with the properties of interest as 

friction coefficient and hardness and with the objective being to minimize friction while 

improving the wear resistance.  These design requirements are generally inversely correlated, 

further requiring the data science framework that is developed in this thesis. 

 

This thesis develops a new hybrid methodology of linking dimensionality reduction (principal 

component analysis) and association mining to aid in materials selection.  The novelty in this 

developed approach is the linking of multiple data mining methodologies into a single 

framework, which addresses issues such as physically-meaningful attribute selection, 

addressing data uncertainty, and identifying specific candidate materials when property trade-

offs exist.  The result of this thesis is a hybrid methodology for material selection, which is 

used here for identifying new promising materials for wear resistant applications. 
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CHAPTER 1 

INTRODUCTION 

A challenge in wear applications is the dual requirements of low friction combined with 

high wear resistance.  A particular application for wear resistant materials is as a coating 

for metals, with the coating typically being a ceramic material.  The difficulty however is 

in the time-consuming collection of wear data, whether through computation or through 

experiment.  This challenge has resulted in a small existing data, which results in design 

difficulty.  A further application of this class of wear resistant materials is for lubricants 

which are used to achieve low friction; example applications include in high temperature 

environments, where an improvement in the hardness of the material is required [1]. 

 

1.1 Objectives and Novelty of Work 

When a large data size exists, identifying the target region and property correlations is 

straightforward.  However, when few data exist, identifying physically significant 

relationships to guide the selection of next material candidate is difficult.  This is especially 

problematic when the data collection on these candidate materials is time-consuming, as is 

the case here. Numerous data mining approaches exist for objectives ranging from 

dimensionality reduction, regression, uncertainty quantification, and defining associations; 

however, given the small data size solely using the approaches developed is not sufficient.  

Rather, a hybrid approach, which judiciously utilizes specific aspects of each technique, is 

required.  This thesis develops such a hybrid approach by combining these various 
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approaches into a new methodology, which starts from small data and poorly defined 

physics to the identification of design rules for accelerated material selection.   

A general correlation between hardness and friction coefficient exists (Fig. 1.1).  The 

property target is high hardness and low friction coefficient.  Moving into the targeted 

region will expand the use of these wear materials to high temperature applications.  In our 

study of correlation amongst physical and engineering properties, we take advantage of the 

ability of data mining methods to screen the properties of different materials when the 

related data points are small in comparison to independent variables. The impact of this 

work includes the development of classification rules and prediction models for developing 

reduced order models. In other words these informatics-based techniques can be used to 

serve as a means for estimating parameters when data for such calculations are not 

available.   

Using principal component analysis (PCA), partial least square (PLS) regression, 

Correlation based feature selection (CFS) subset evaluation method and classification 

apriori algorithm we have derived a method to examine a dataset which has very less data 

points in comparison to independent variables. These various approaches are discussed in 

the next section.  By piecing different data mining techniques together we have made an 

attempt to understand the physics behind what makes a material harder and allows it to 

have less friction at the same time. This work has similar objectives to other approaches, 

which try to identify trends between material descriptors and properties [18,19].  

However, in those works, identifying the key attributes and identifying trends in the data 

leads only to the empirical mapping of known data.  The novelty contributed by the 
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approach developed here is that by integrating these aspects with predictive and 

associative algorithms, we convert these mappings into a   selection map encompassing 

unknown materials as well, thereby defining the target candidates. 

 

 

Figure 1.1 The relationship between hardness and friction coefficient.  The objective is to 

increase hardness and decrease friction coefficient, although a boundary in the design of 

these materials is present in the existing data.   

 

This research aids in understanding how independent variables contribute to the prediction 

of the engineering properties, particularly when the data is small and sparse with high levels 

of uncertainty. Different methodologies on attribute selection, and particularly 

understanding each aspect of these methodologies, are explored and linked to predictive 
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approaches for developing a quantitative structure-property relationship (QSPR) and 

developing a “virtual” material library. This virtual library was developed from the small 

knowledge base. The hybrid informatics approach results in increasing by four times the 

knowledge base. This thesis also focuses upon comparing different data mining techniques 

and to address issues such as over fitting, robustness, and uncertainty. Approaches in 

analytic tools and association mining are then further utilized and integrated with this new 

approach for selecting the best candidates when an explosion in data size occurs. 

 

1.2 Data Mining 

        This thesis explored and applied multiple data mining techniques, with aspects of the 

following primarily utilized: principal component analysis (PCA), partial least squares 

(PLS), CFS subset evaluation and a priori classification using Class Association Rules 

(CARs). Future work will use qualitative decision analysis methods to identify the 

compounds with desired balance of the properties of wear resistance defined by the 

classification rules. The two properties of friction coefficient and hardness are considered 

in this thesis but an approach to how this can be applied to more than two properties is also 

addressed. 

 

PCA [2-6] is a projection technique for handling multi variable data that consists of 

interrelated variables. It inherently decomposes the covariance (or correlation) matrix by 

calculating the eigenvalues and eigenvectors of the matrix. This decomposition helps in 

reduction of information dimensionality. As we are selecting only important attributes 
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through this method, irrelevant and some relevant information is lost but at the same time 

this method does makes sure to minimize the loss of information and maximize the 

variance of the linear combination of the variables and uncorrelated axes leading to the 

transformation (i.e rotation) of the original coordinate system. The constructed axes, 

referred to as principal components (PCs) correspond with eigenvectors of the original data 

covariance matrix and are orthogonal to each other. They consist of loadings, which are 

the weights for each original variable and scores containing information of original samples 

in a rotated coordinate system. Although the number of PCs equals the number of 

dimensions of the original data, a few PCs are usually sufficient to capture the major 

information from the data defining the system. PCA is a powerful tool for understanding 

the underlying physics within materials science problems and has been used to address 

materials science issues for a variety of reasons and materials [7-11]. 

PLS [12-17] is used to make the QSPR model for the given data. PLS has an advantage 

over typical linear regression techniques of handling co linearity among properties and 

missing data. As PCA is an analysis for one data matrix. Multivariate regression is for 

correlating the information in one data matrix to the information in another matrix. PLS is 

one way to do multivariate regression. Typically one matrix is a cheap measurement of 

some sort and the other matrix with which we are correlating it can be either very 

expensive, difficult to measure or time consuming. So this method is used to predict the 

expensive matrix with the help of the cheap one. Like PCA, in PLS the data is converted 

to a data matrix with orthogonalized vectors. The relationship discovered in the dataset 

(training data) can then be applied to a test dataset based on the differences in known 

properties appearing in both the training and the test sets. The accuracy of prediction model 
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improves with increasing number of conditions and responses, and thus all predictions 

shown in this paper can improve with large dataset including more systems and more 

properties/parameters [2]. 

CFS subset evaluation is another method of attribute selection. It evaluates the worth of a 

subset of attributes by considering the individual predictive ability of each feature along 

with the degree of redundancy between them. Also exhaustive search was done for this 

evaluation, as it performs an exhaustive search through the space of attribute subsets 

starting from the empty set of attributes and reports the best subset found. Then 

classification of the reduced dataset was performed with the help of apriori algorithm using 

class association rule (CARs). A classification data set is in the form of relational table, 

which is described by a set of distinct attributes (discrete and continuous), whereas 

association algorithm cannot be performed on a continuous dataset. So we first discretize 

each continuous attribute. After discretization, we can then transform each data record to a 

set of (attribute, value) pair of an item. These rules helped in identifying the little nuggets 

of insight in the data. By calculating the confidence, support and the lift values for each 

rule we did end up getting six very good rules as are discussed in the 5th chapter, which can 

help and contribute in the further analysis of the properties of wear resistance and how to 

improve them. Then there is a future work presented using qualitative decision analysis 

method to identify the compounds that best satisfy the classification rules. 

Similar work taking binary compounds into consideration has been done but the work in 

the field of wear resistance application and studying the peculiarities of hardness and 

friction coefficient properties to see what physical properties affect these engineering 
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properties and how decision analysis based on these properties can help in a better wear 

resistance application has not been explored earlier. Also a new methodology and approach 

to materials development using data mining and qualitative decision theory techniques has 

been introduced in this thesis. It also provides a formal way to handle imprecision and 

inaccuracies inherent in material properties predicted by machine learning algorithms. This 

thesis also demonstrates how data mining and decision theory can complement each other 

in the overall process of materials development and optimization. The methods explored 

in this thesis will also help us in two ways one, it is applicable to material selection, and 

two it can be applied as an inverse problem of identifying promising applications for new 

materials [19]. Also to come up with the combination of techniques to tackle the problem 

of analyzing the data when the independent variables are much more in comparison to the 

data points, hence the chances of over fitting a model are very likely. To make choices in 

this direction we need to look into some relevant observations and deconstruct those 

observations, and for this we need a model. There are two prediction models and six 

classification rules as a result of this thesis, which have helped the material scientists, 

explore the physics behind these two engineering properties further.  

1.3 Thesis Outline 

        This thesis is organized as shown in Figure 1.2, addressing applications of data mining 

for the development of materials through engineering properties based on their physical 

properties.  
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Fig 1.2 The logic of this thesis, with chapter 2 and 3 dealing with the application of PCA 

and PLS data mining techniques, Chapter 4 with QSPR model application on the virtual 

data set, Chapter 5 with classification technique and Chapter 6 has a proposal for 

application of qualitative decision analysis with data mining technique of classification.  

 

         In chapter 2, we will be discussing the logic of the PCA technique and its application 

on the data set of 36 compounds, showing how data mining can be used to reduce the 

number of parameters and the results are showing which attributes play an important role 

in describing the hardness and friction coefficient of a material. We will also discuss the 

constraints and the reasoning behind selecting only a certain important attributes out of the 
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total result. In chapter 3, I demonstrate how data mining can be used to predict these two 

important properties of wear resistance and the logic behind PLS and have then discussed 

the results, leading to a QSPR model.  

 

        In chapter 4, Development of the virtual database has been discussed and the 

application of the QSPR model on the data set has been done to evaluate the results and 

hence, the model. 

        In chapter 5, Development of classification rules and another approach of feature 

selection (i.e CFS subset evaluation) has been discussed. Also the comparison of both the 

results have been done in this chapter. 

 

        Chapter 6 summarizes the work and makes suggestions as to the future direction of 

this work and the implications it has on the development on new materials as well as new 

applications with such requirements.  
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CHAPTER 2 

PRINCIPAL COMPONENT ANALYSIS 

Principal component analysis provides a tool for visualizing and quantifying relations 

between many variables. This is done through bi plots (which have both scores as well as 

loadings plot) as it gives us the description of both the independent variables and samples. 

Score plots are used for outlier detection; even though the PCA describes the common 

phenomenon in the data and not individual peculiarities, through outlier detection and 

removing those outliers, gives us the major part of the data which can then be used for 

pattern recognition. Loadings plot provide us the information about the variables, for 

example it can be used to explore the reasons what make a sample an outlier. The equation 

X=TP’+E where X is the data matrix, T are the scores, P are the loadings (hence its 

transpose is used in the equation) and E is the residual i.e. the unexpected part of the data 

or the noise in the data. Each Principal component consists of one score and one loading 

vector. Component one which is the first component of the resultant matrix TP’ has highest 

possible variance, and next highest is of the component orthogonal to the 1st component 

and so on and so forth.  

Through PCA calculations we then calculate the kth variable to see which attributes are 

most relevant and hence this methodology is used here as a dimensionality reduction 

approach. 

2.1 Mathematics of PCA 

        For a thorough explanation of PCA, the treatment from different sources are combined 

here [7]. Let us consider the case of a vector x of p number of variables. With
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, the variance of the linear function is maximized in PCA. The 

linear function,  which is uncorrelated with , can then be calculated to 

capture the remaining variance. Therefore the k-th linear function, , is calculated 

to have maximum variance and to be uncorrelated with . Consider the case 

where the vector of random variables x has a known covariance matrix S. 
 
is an 

eigenvector of covariance matrix S corresponding to its k-th largest eigenvalue . If is 

chosen to have unit length ( ), then the variance of is . To populate the 

first projection vectors  in , PCA finds maximum variance, such that 

 (2.1) 

With the constraint of unit length of and maximum variance of , the method of 

Lagrange multipliers can be applied as 

 (2.2) 

Where λ is a Lagrange multiplier. Since differentiation gives the maximum value, equation 

(A.2) results in 

 (2.3) 

Where Ip is a (p×p) identity matrix. This is known as the problem of eigenstructure for the 

covariance matrix. To avoid a trivial null solution, (S- λIp) should be zero. λ and α1 should 

be an eigenvalue of S and the corresponding vector respectively. Therefore, the eigenvalue 

λ represents the variance because: 

 (2.4) 

Since variance should be maximized in PCA, the eigenvalue λ must be as large as possible. 

The vector α1 is the eigenvector corresponding to the largest eigenvalue λ1 of S.  A graphical 

1 11 12 1[ , , , ]T

p    1 1

Tz x

2 2

Tz x 1 1

Tz x

T

k kz x

1 1 1, ,T T T

kx x x   

k

k k

1T

k k   kz var( )k kz 

1 1 1

Tz x

1 1 1 1

1 1 1 1
1 1

arg max[var( )] arg max[ ]
T T

T Tx S
   

   
 

 

k 1z

1 1 1 1max( ) [ ( 1)]T TL S      

1( ) 0pS I  

1 1 1 1 1var( )T T Tx S       



www.manaraa.com

15 

 

representation of the eigenvectors and eigenvalues and the assignment of PCs is shown in 

Figures A.2 and A.3.  The second principal component maximizes the variance.  

 (2.5) 

Subject to the constraint, . Thus, it should be uncorrelated with

. Using the method of Lagrange multipliers, 

 (2.6) 

Where λ and are Lagrange multipliers. The following relations result in . 

The vector αk is called the loadings for the k-th principal component (PC). The algorithms 

for calculation of principal components are mainly based on the factorization of matrices. 

Singular vector decomposition (SVD) and eigenvalue decomposition are the main 

techniques for factorization of matrices. For any (I×I) matrix A and P which are non-zero 

orthonormal matrices, the eigenvalue problem can be expressed as 

 (2.7) 

Where  is an eigenvalue matrix and its components are . Then matrix A 

by eigenvalue decomposition is 

 (2.8) 

Here, the property PT=P-1 was used from the fact that P is orthonormal. If a covariance 

matrix S of X is a matrix A, the data manipulation involves decomposition of the data matrix 

X into two matrices V and U, and V is orthonormal, 

 (2.9) 

The columns of U are known as scores and those of V are called loadings. PCA is a 

technique to decompose eigenvalues of a covariance matrix, S, of a given data matrix. The 

loadings can be understood as the weights for each original variable when calculating the 

principal components. The matrix U contains the original data in a rotated coordinate 
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system. The mathematical analysis involves finding these new “data” matrices U and V. 

The dimensions of U (i.e. its rank) that capture all the information of the entire data set of 

X (i.e. # of variables) is far less than that of X (ideally 2 or 3). One now compresses the N 

dimensional plot of the data matrix X into 2 or 3 dimensional plot of U and V. While the 

eigenvalues geometrically represent the length of each of the principal axes (i.e. scores), 

the eigenvectors of the covariance matrix represent the orientation of principal axes of the 

ellipsoid (i.e. loadings). By using just a few latent variables, the dimensionality of the 

original multivariate data sets are reduced and visualized by their projections in 2D or 3D 

with a minimal loss of information. Therefore, PCA is a process of dimensionally reduced 

mapping of a multivariate data set [2-6]. 

 

 

Figure 2.1. A graphical representation of the data points and their eigenvalues 
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Figure 2.2. Determination of two principal components (PC1 and PC2) in a new scaled 

coordinate, x1 and x2 

 

 

2.2 Results of the PCA Analysis 

        As described above the first PC accounts for the maximum variance (eigenvalue) in 

the original dataset, while the second PC is orthogonal (i.e., uncorrelated) to the first and 

accounts for most of the remaining variance. So after applying the PCA on the multivariate 

data for dimensional reduction, we get the major pattern of the data while maximizing the 

variability contained within the dataset [8-11]. From the PCA results (refer appendix) we 

find that the first 4 PCs capture 81.8% of the total variance within the original data matrix. 

Individually PC1 captures 39.71%, PC2 captures 19.81%, PC3 captures 15.36% and PC4 
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captures 6.92%. It also implies that the first two PC axes already reflect almost 60% of the 

information of the original data of 36 variables for the data on hardness and friction 

coefficient. The following score plots in Fig. 2.1 (Hardness) and Fig. 2.2 (Friction) shows 

the interrelationships between the samples within the dataset relative to the first and second 

PCs. 

  

Fig 2.3 Principal component analysis scores plot for the hardness data covering 61.88% of 

the information of the original data.  The best current materials in terms of hardness / 

friction combination are labeled on this figure. 
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Fig 2.4 Principal component analysis scores plot for the hardness data covering 52.49% of 

the information of the original data. The best current materials in terms of hardness / 

friction combination are labeled on this figure. 

 

PCA was used to assess the correlation between each of the descriptors input into the 

regression analysis and the properties of interest (hardness and friction coefficient).  The 

loadings plot reveals the significance of the different input variables with respect to the 

target variable, which are our two engineering properties.  Also this method helps in 

checking the outliers using the scores plot and the loadings plot which helps further in the 

analysis of those outliers. There were no outliers in our analysis so for the next part we 

have considered the same data. 
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2.3 Analysis of Variable Importance  

        To select the descriptors that best define the average hardness and average friction 

coefficient respectively, we used variable importance in the projection method. In partial 

least square regression, the relative contribution of each parameter is evaluated using the 

measure of VIP [8]. Suppose t stands for the target (a particular site of a specific 

compound), k for the descriptor, r represents the number of descriptors and by Px we 

mean xth PC. 

Importance of the kth variable= (P1
KP1

t + P2
K P2

t/∑P1
K P1

t + P2
K P2

t)*100                   (2.10) 

Where P1
K is the kth component of the first eigenvector (PC1) corresponding to the kth 

variable and P1
t is component of PC1 corresponding to the target vector t.  

The cutoff of variable importance parameter value is greater than 10 for hardness and 25 

for Friction coefficient; these values will be selected as a model parameter.  After 

performing PCA and assessing the correlation of the descriptors and performing 

regression analysis (which is explained in the next chapter), the results of the analysis can 

then be compared with the predictive models to understand the physics and limitations of 

the models.  

2.4 Results of Variable Importance 

         The objective of the attribute analysis is comparing the different models. The results 

show that there were around eight variables that are above the defined cut off value of 10 

for hardness but only four attributes were considered for the QSPR model. The other few 

attributes that pass the cut off were not considered as they did not improve the accuracy 
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when added to these selected attributes as shown in the figure, so we concluded that these 

are the best possible descriptors as they gave the best accuracy.  

 

Fig 2.5 Ranking of importance of features on hardness through PCA calculated according 

to the equation of importance of kth variable. The four most important predictor variables 

that are giving highest accuracy are Molar Volume, Covalent Radius, Atomic Radius and 

Pseudo potential radius. The following table shows the variables that correspond to each 

number in the above graph. 
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Table 1: Describing each number relating to which property in both graphs showing 

variable of importance results. 

1 Covalent radius (A) 

2 Covalent radius (B) 

3 Covalent Radius (A+B) 

4 Melting point (A) (K) 

5 Melting point(B) 

6 Melting point (A+B) 

7 First Ionization Potential (A) 

8 First ionization potential(B) 

9 First Ionization Potential(A+B) 

10 Martynov-Batsanov electronegativity X [(eV)1/2] A 

11 Martynov-Batsanov electronegativity X [(eV)1/2] B 

12 Martynov-Batsanov electronegativity X(A+B) 

13 Valence electron number, Nv (A) 

14 Valence electron (B) 

15 Valence electron number (A+B) 
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Table 1. (Continued)  

16 Specific heat A 

17 Specific heat B 

18 Specific heat (A+B) 

19 Pauling electronegativity A 

20 Pauling electronegativity B 

21 Pauling electron negativity (A+B) 

22 Heat capacity A 

23 Heat capacity B 

24 Heat capacity A+ B 

25 Atomic radius A 

26 Atomic radius B 

27 Atomic radius (A+B) 

28 Boiling point A 

29 Boiling point B 

30 Boiling point(A+B) 

31 Density A @293K 
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Table 1. (Continued)  

32 Density B @293K 

33 Density (A+B) 

34 Molar Volume A 

35 Molar Volume B 

36 Molar Volume (A+B) 

37 Thermal conductivity A 

38 Thermal conductivity B 

39 Thermal conductivity (A+B) 

40 Pseudo potential core radii sum.A 

41 Pseudo potential core radii sum.B 

42 Pseudo potential core radii sum (A+B) 

43 Heat of fusion A 

44 Heat of fusion B 

45 Heat of fusion (A+B) 

46 Heat of vaporization A 

47 Heat of vaporization B 
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Table 1. (Continued)  

48 Heat of vaporization (A+B) 

 

For the friction data, the analysis indicates eight important variables; again the best 

combination is of valence electron, first ionization potential, boiling point and heat of 

vaporization as the accuracy is best with this combination and other variables are not 

affecting the accuracy in any way when included. The following graph indicates the results 

as well. 

 

Fig 2.6 Ranking of importance of features on friction through PCA calculated according 

to the equation of importance of kth variable. The four most important predictor variables 

that are giving highest accuracy are Molar Volume, Covalent Radius, Atomic Radius and 

Pseudo potential radius. 



www.manaraa.com

26 

 

2.5 References 

1. P. Menezes, M. Nosonovsky, S. P. Ingole, S. V. Kailas and M. R. Lovell. Tribology for 

Scientists and Engineers: From Basics to Advanced Concepts, Springer 2013th, New York, 

2013. 

2. Scott R. Broderick, “Statistical learning for alloy design from electronic structure 

calculations,” (PhD diss, Iowa State University, 2009), 99. 

 

3. Suh C, A. Rajagopalan, X. Li, K. Rajan. The application of principal component analysis 

to materials science data. DATA Sci. J. 2002;1:19 

 

4. Daffertshofer A, Lamoth CJC, Meijer OG, Beek PJ. PCA in studying coordination and 

variability: a tutorial. Clin. Biomech. 2004;19:415. 

5. Ericksson L, Johansson E, Kettaneh-Wold N, Wold S. Multi- and Megavariate Data 

Analysis: Principles, Applications. Umea: Umetrics Ab, 2001. 

6. Berthiaux H, Mosorov V, Tomczak L, Gatumel C, Demeyre JF. Principal component 

analysis for characterising homogeneity in powder mixing using image processing 

techniques. Chem. Eng. Process. 2006;45:397. 

 

7. E. W. Bucholz, C. S. Kong, K. R. Marchman, W. G. Sawyer, S. R. Phillpot, S. B. Sinnot, 

K. Rajan. Data-driven model for estimation of friction coefficient via informatics methods. 

Tribol Lett (2012) 47:211-221 

 

8. Chong, I.G., Jun, C.H.: Performance of some variable selection methods when 

multicollinearity is present. Chemom. Intell. Lab. Syst. 2005;78:103-112 

9. Massart DL, Vandeginste BGM, Deming SN, Michotte Y, Kaufman L. Chemometrics: 

A Textbook. Amsterdam: Elsevier, 1988. 

10. Jolliffe IT. Principal Component Analysis. New York: Springer-Verlag, 2002. 

11. Davis JC. Statistics and Data Analysis in Geology. New York: John Wiley & Sons, 

1986. 

12. Suh C. Informatics Aided Design of Crystal Chemistry. Engineering Science, vol. 

Ph.D.: Rensselaer Polytechnic Institute, 2005. 

 

 



www.manaraa.com

27 

 

CHAPTER 3 

PARTIAL LEAST SQUARE REGRESSION 

PLS is one way to do multivariate regression. Principle of PLS is to find components in 

such a way that their score values have maximum covariance. PCA is for analysis of one 

data matrix (X). Multivariate regression is for correlating the information in one data 

matrix (X) to the information in another matrix (Y). Typically the X matrix is a cheap 

measurement of some sort and the Y matrix may be very expensive/difficult to measure/or 

Time consuming, so through X we can predict the values of Y by this method. 

3.1 Introduction  

        So from the important descriptors that we get from the PCA are then used for making 

the prediction model through PLS. To discuss the theory of PLS regression here are two 

multivariate matrices shown in Fig. 3.1. 

 

 

 

 

 

 

Fig 3.1 Describing through a block diagram the principal of PLS regression method, where 

X is a cheap matrix Y is the matrix of the data which is difficult to measure and the first 
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score in X i.e. t1 has the maximum covariance with the first score in Y i.e. u1 and r1 is a 

constant and where each is a component of a Matrix denoted by capitol letters. 

 

 We want to develop a model so in future we don’t need both X and Y but just X and then 

by using X and the model we are able to predict the values of Y. Let us assume that we 

perform PCA on our Y matrix first. As we know that to perform PCA on a single data 

matrix is very useful because they have lower rank i.e. they can be described by fewer 

components than the original number of variables. So if we do a PCA on Y we would then 

be able to describe our Y matrix in terms its scores time loadings. Y=UQ’+F So through 

this we conclude that we just have to predict U (i.e. the scores of Y) and through these 

scores and the loadings we can then predict Y.  

In PLS we develop our model in such a way that the first score in X i.e. t1 has the maximum 

covariance with the first score in Y i.e. u1. So because of this high covariance we can 

predict the first score in Y by the first score in X so as soon as we have the score values of 

X we can predict Y. So this the main concept of PLS, it finds components in such a way 

that their score values have maximum covariance, u1 has maximum covariance with t1 so 

on and so forth.  

PLS does not consist of just doing PCA on X and PCA on Y. Instead of finding the major 

variation in X and the major variation in Y, PLS looks for a direction in both which is good 

for correlating X score with the Y score. So it looks for the relevant information (for Y). 

The mathematics of PLS has been explained in the next section. 
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3.2 Mathematics of PLS 

Partial least squares (PLS) finds the maximum variance in the predictor variables 

(X) and finds the correlation factors between X and the predicted variables (Y) that have 

maximum variance. In PLS, two linear combinations are generated from the X and Y 

respectively and the maximum covariance between X and Y is calculated. Consider an X 

matrix of size N×K and an N×M matrix Y  

The following descriptions are mainly based on [1,4,5,7]. The scores of X, ta (a=1, 

2, …, A=the number of PLS components) are calculated as linear combinations of the 

original variables with the weights w*
ka. The mathematical expression is 

or  (3.1) 

where k=(1, …, K=the number of X variables). The predictor variables, X, are expressed 

as: 

  (3.2) 

where eik is the X residuals.  

Similarly, for predicted variables Y, if the scores of Y are ua and the weights cam:  

or  (3.3) 

Since scores X are good predictors of Y in PLS, then: 

or  (3.4) 

where F represents the error between observed values and the predicted response. Using 

equation (3.1), the equation (3.2) is also expressed as  

 or  (3.5) 

*
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From equation (3.3), the PLS regression coefficients βmk is written as 

 or  (3.6) 

Geometrically, all the above parameters are shown in Figure 3.1 As discussed 

before, the multidimensional space of X is reduced to the A-dimensional hyper plane. Since 

the scores are good predictors of Y, the correlation of Y is formed on this hyper plane. As 

in PCA, the loadings of X (P) represent the orientation of each of the components of the 

hyper plane.  

According to the approach of Phatak and de Jong, after n dimensions have been 

extracted the following equations are available. 

 (3.7) 

The prediction of y then has a general form given by equation (2.7) 

 (3.8) 

From the equations (3.5) and (2.6), equation (3.6) is written as: 

            (3.9) 
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Figure 3.2 Geometrical representation of PLS method [1]. 

 

3.3 Results 

        Before conducting a PLS regression, a multiple R regression was also performed on 

the data for comparison purposes. The R2 value for the prediction model of the hardness 

data was 0.9763; R2 is the goodness of fit for a formula (usually a straight line) to the data 

and it support multiple R assumption which in this case supports the selected variables of 

importance. Multiple R is another measure, which is when greater than 0 and close to 1 

state that the two variables are closely related, its value for the hardness data is .98809. 

Also to state the accuracy of the prediction model the adjusted R-value is calculated, which 

is .97 for the hardness prediction model. Hence the accuracy of the model is very good. 

Similarly the R2 value for the friction prediction model is .8117, Multiple R is .900997 and 

Adjusted R is .774154. In these cases there can be two theories either the accuracy is too 
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good due to over fitting or else the model is very accurate. To look into this argument 

further let’s discuss the PLS regression results also.  

 

The Quantitative Structure–Property Relationship Model is achieved after Partial Least 

Regression, which can then be used for predicting the friction coefficient and hardness of 

the binary compounds. The following equations were the QSPRs initially developed with 

the objective of maximizing accuracy and with the results shown in Figs. 3.3 and 3.4. 

             (3.10) 

           (3.11) 

Hardness = -1.85*covalent radius + 0.928*atomic radius – 

0.019*molar volume – 0.844*pseudopotential radius + 2.15 

 Friction Coefficient = 0.84*covalent radius - 

.00017*melting point + 0.021*atomic radius + 

0.03*pseudopotential radius – 0.0084*heat of vaporization – 

0.347 
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Fig 3.3 Predicted vs. experimental hardness values for the training data through partial 

least square regression.  

 

Fig 3.4 Predicted vs. experimental friction coefficient values for the training data through 

partial least square regression technique. 
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In developing these models we applied cross validation through the form of leave-one-out 

(LOO), where a sample is removed when building the model and then is used to test the 

model accuracy.  This is repeated for each sample.  This allows us to get the root mean 

square error (RMSE) and root mean square error of cross validation (RMSECV).  The 

selection of dimensions to include in building the model is such that n is one less than 

RMSE(n)/RMSECV(n) is equal to unity.  Therefore, this demonstrates the typical approach 

of utilizing PLS where the objective is to maximize accuracy while also employing a cross 

validation strategy. 

However, to further assess the physics of the models, they were applied to “virtual” 

compounds (these compounds and the associated descriptors are discussed in the next 

section).  The result of applying these QSPRs is shown if Fig. 3.5.  Clearly these models, 

while highly accurate for the training data are insufficient for capturing the physics.  The 

two most obvious issues are the negative friction coefficient values, which is physically 

unreasonable, and the three outlier chemistries which have hardness over eight times 

greater than any of the other compounds.  This introduces two issues: first, the model is 

over-fitting the training data to a great extent, where the training data is modeled with high 

accuracy but has no application to other systems, and second that it is likely over-fit to the 

physics of the outlier compounds, thus significantly skewing the results.  This represents 

the challenge addressed in this thesis associated with small data sets.   

. 
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Fig 3.5 The graph between the predicted hardness and predicted friction coefficient after 

application of the QSPR model on the virtual data set of 135 compounds.  The physical 

unreasonableness of this result demonstrates the challenge with small training data, even 

with high accuracy and cross-validation employed as is typically done. 

 

To develop a QSPR which is applicable for new systems, the robustness was increased 

with a trade-off in lower accuracy.  This was done by reducing the number of latent 

variables (LVs), akin to the PCs in PCA, used in the model.  Therefore, this introduces less 

uncertainty and contributions from outliers, as only the LVs describing the general physics 

are included.  This leads to models which fit training data less well, but with much 

improved fitting to the test data.  The result of this new model is as follows: 
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                                                                                                                                      (3.12) 

          

 

 

                                                                                                                                      (3.13) 

 

The result of this model, as compared with the input data is shown in Fig. 3.6.  In the figure 

the red squares are the predicted values and the black circles are the measured values for 

the new prediction model described in the equations 3.12 and 3.13.  

 

The two problems that arose when following the standard approach for developing QSPR 

on small data is addressed in this updated prediction.  The results are all physically 

reasonable, with the measures falling within the boundaries of the actual data.  Further, the 

model is not over-fitting to outliers, as the predictions, even for outliers in the original data, 

are clustered with the majority of the other compounds.  Therefore, this model is capturing 

the general guiding physics, without building in physics that is only specific in a small 

number of cases.  While this contributes to potentially missing promising candidate 

materials which do follow unique physics, it helps ensure that any compounds identified 

Hardness = .93*covalent radius + 0.59*atomic radius 

+ 0.14*molar volume – 1.85*pseudo potential radius 

+ 0.44 

 Friction Coefficient = -.61*Covalent Radius – 

0.00015*Melting Point + 0.019* Pseudo potential core 

radii – 0.0046*Molar Volume – 0.19 
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as having unique properties do indeed have those properties and therefore significantly 

reduce the number of materials that need to be experimentally explored further. 

 

Fig 3.6 The red squares are the predicted values and the black circles are the actual data 

points. This demonstrates that the new model is not overly impacted by outliers.  This 

ensures higher robustness and the confidence when new compounds with promising 

properties are identified.   

 

This chapter explored the trade-offs in developing predictive models on small databases.  

In this chapter, I demonstrated that enhancing the model for robustness at the expense of 

accuracy leads to more meaningful results, which is further highlighted in the next section.  

The QSPR modeling is a fast method and can be applied to the system for which you have 

limited knowledge on. QSPR models can screen the material space much faster than 

otherwise possible. In the next chapter we will discuss the application of this predictive 

model on a virtual database and will assess the validity of this model. 
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CHAPTER 4 

VIRTUAL DATABASE DEVELOPMENT AND ANALYSIS 

In this chapter we will predict the hardness and friction coefficient of over 100 new binary 

compounds for chemistries not existing in our training data and characterized for wear 

applications. A partial least square data mining approach has been used for the initial 

analysis of the data. The values of important attributes have been calculated mathematically 

by normalization using elemental database for the virtual compounds.  

 

4.1 Development of Virtual Database 

        The experimental data comprises of 36 compounds and their calculated friction and 

hardness values and mathematically calculated attributes by normalization. All these 36 

compounds were binary in nature. Using those 36 compounds we have developed 135 new 

compounds, combining different elements in a binary form which have chemically possible 

chemistries. As shown in the following diagram the red squared elements are the cations 

and the green squared elements are the anions. These elements are the ones of which the 

36 compounds were made of. Using these elements and previously untested chemistries 

but chemically possible combinations we have developed our virtual database.  
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Fig 4.1 Periodic table showing the elements used in the virtual database formation, the red 

boxes show the elements that act as cations in a binary compound and green are the anions.  

 

The list of compounds and the data calculated have been mentioned in the appendix. For 

these 135 compounds the data was calculated and then the QSPR model was applied to this 

database. As discussed in the 1st chapter that we have conducted this analysis to study 

further those compounds which may lay in the targeted region i.e. the highlighted region 

of Fig 1.1 for the applications where materials with improved wear resistance performance 

are required. We also discussed in the 3rd chapter that the accuracy of a prediction model 

itself cannot validate the model as sometimes it can be an over fitted model. This problem 

occurs with those models, which have lesser data points in comparison to independent 

variables. We also conducted a standard method of decision tree analysis, which was again 
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highly over fitted. To solve this problem further and as described in the previous chapter 

by improving the robustness of the model we derived new QSPR models. Using these 

improved models and applying it on the virtual database, the following figure was the 

derived result.   

 

Fig 4.2 The graph between the actual and predicted hardness and friction coefficient after 

application of the QSPR model on the virtual data set of 135 compounds based on equations 

3.12 and 3.13. The red squares are calculated from QSPR model and the black circles are 

the actual dataset.  
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As we can see in the graph above the actual dataset (the black circles) has five outliers 

which are in the highlighted or targeted region, these compounds are SiO2, Al2O3, Ag2S, 

WS2 and FeS2. Our aim was to explore the virtual database and see if we can find new 

compounds in the targeted region satisfying the criteria of low friction and higher hardness. 

We are able to find six compounds with the desired friction and hardness combination. 

Also there are three new compounds that are highlighted in the graph on the upper corner 

on the right, which have very high hardness. The following table enlists the compounds 

with the desired output. 

Desired friction and hardness combination Very high hardness 

SiF4, ZrF4, TiF4, VF5, MoF4, SnF4 BaO, PbO, AgO 

 

Table 2: Compounds with desired properties not included in the existing knowledge base. 

 

In the previous chapter, BaO, PbO and AgO were the outlier compounds which had unique 

physics not present for others.  Of note, these compounds are identified from our new 

model as well.  Therefore, although we increased the robust catching more general trends 

and less sensitive to outliers, are model still captures these three compounds with unique 

physics.  This demonstrates the benefit of this approach for not being overly impacted by 

outlier compounds while still capturing unique physics when present. 
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To explore what can be done for studying such type of data further and to get an unbiased 

predictive model, to help us get useful insights into the physics related to material science 

another methodology has been explored in the next chapter. There have been different 

approaches of dealing with dataset of small data points plus more independent variables. I 

applied classification techniques after applying exhaustive search on the data to come up 

with association rules which do not manipulate the data but analyze it as it is and I came 

up with classification rules for hardness and friction coefficient where how these can be 

made better and how we can compare the virtual dataset on the basis of these rules was 

found out. Also how to conclude which virtual compound is better than another by defining 

specific confidence and support has been explored and discussed thoroughly in the next 

chapter.  

 

 

 

 

 

 

 

 

 



www.manaraa.com

44 

 

CHAPTER 5 

DEVELOPMENT OF CLASIFICATION RULES 

Apart from PCA we have also looked into another feature selection method in this chapter, 

which is CFS subset evaluation. In this chapter we will also discuss the two approaches of 

data mining heuristic and exhaustive and will give our reasoning of selecting the exhaustive 

approach for the further analysis of our experimental data as well as the virtual dataset. 

Also the development of the classification rules has been discussed here in this chapter. I 

have also explored how these rules can benefit further development of new materials as 

well as how they can affect future applications in the field of wear resistance applications.  

 

5.1 Alternative Feature Selection 

        This is used to select features relevant to a particular application. It helps in removing 

irrelevant and/or redundant data, hence improves the data quality and makes mining 

algorithms work faster on larger sized data. It enhances the comprehensibility of mined 

results as well. The feature selection ensures that the data fed to the data mining algorithm 

applications, is performed effectively and efficiently.  

We used principal component analysis for feature selection in our previous chapters but 

for the analysis in this chapter we will use them but will include another feature selection 

method known as CFS subset evaluation method [1,2]. 

It evaluates the worth of a subset of attributes by considering the individual predictive 

ability of each feature along with the degree of redundancy between them. Also exhaustive 
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search was done for this evaluation, as it performs an exhaustive search through the space 

of attribute subsets starting from the empty set of attributes and reports the best subset 

found.  

 

5.2 Results of Feature Selection   

The results for hardness were similar to the results of the PCA analysis and following were 

the important materials: 

• Larger Covalent Radius (anion+cation) 

•  Larger first Ionization Potential (anion+cation) 

•  Larger specific heat (anion+cation) 

•  Larger atomic radius (anion+cation) 

•  Larger atomic radius of cation. 

•  Larger density of an anion. 

•  Larger Molar Volume of anion. 

•  Larger pseudo potential core radii (anion+cation) 

For friction the important attributes through CFS subset evaluation were not quite similar 

to that of PCA, following were the results  

• Larger Valence electron anion 

•  Larger Boiling point (cation+anion) 
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•  Larger Molar Volume cation 

•  Larger Heat of vaporization cation 

For hardness the results were derived using these descriptors and came up with the apriori 

algorithm rules using classifiers while for friction the results of CFS subset evaluation gave 

no results even on decreasing the support and confidence to the minimum possible values. 

So to derive friction coefficient classification rules the important descriptors of the PCA 

analysis were considered. Hence conclusion of rules using these important descriptors was 

done for this analysis. 

 

5.3 Heuristic and Exhaustive Search 

        There are two kinds of approaches in a data mining algorithms for searching rules in 

a data set, heuristic and exhaustive approach. Considering the need of finding all possible 

rules in the dataset to get useful insights into the correlation of important attributes to the 

properties of interest we decided to apply classification using association rules in our 

dataset. This is the kind of algorithm on which extensive research has been done in the data 

base community on learning rules using exhaustive search under the name association rule 

mining, as many existing classification and rule learning algorithm in machine learning 

mainly use the heuristic or greedy search to find a subset of regularities.   

 

The issue with the heuristic approach is that they aim to find only a subset of regularities 

that exists in the data to form a classifier. In heuristic approach the covered examples are 
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either deleted or their weights are reduced for further formation of rules, this may hence 

not reflect the true regularities in the data and many high quality rules may not be found. 

Through apriori algorithm we use exhaustive search to find all rules in data that satisfy the 

user specified minimum support (5%) and minimum confidence (has been varied).  

The aim here was to get all the rules as mentioned above and so the expectation was that 

the results will give way too many number of rules from which we might extract the 

important ones. As the rules with greater confidence rules will be very obvious and rules 

with less confidence can also have some value to see the unpredictable or new side of it. 

Also this kind of rules formation has not been done before in the material science field so 

the rules with higher confidence can also give useful insights. But surprisingly we got only 

six rules with a reasonable confidence percentage; these have been discussed later in the 

chapter.  

 

5.4 Apriori Algorithm and the Methodology of class association rules 

        It is used for the classification of the reduced data set. Iteratively reduces the minimum 

support until it finds the required number of rules with the given minimum confidence. The 

algorithm has an option to mine class association rules and that is what I have focused on 

in my research work.  

The major strength of this system is that they are able to use the most accurate rules for 

classification because their rule learners aim to find all rules. This explains their good 

performance in general. However they also have weaknesses like they use only a single 
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minimum support value in rule generation, which can be inadequate sometimes for 

unbalanced class distributions. It generates all rules in two steps  

1. Find all the frequent item sets that satisfy minimum support (5%) 

2. Generate all the association rules that satisfy minimum confidence using the frequent 

item sets. (Varied from 100% to 70%) 

 

 

Fig 5.1 This figure explains the different levels of item sets and how the mining is 

performed. Here k=5. 

To explain the concept further let’s see what an itemset is? An itemset is a set of items. A 

frequent itemset is an itemset that has support above minimum support that is defined by 

the user. Mining of frequent itemsets is done in a level-wise fashion. Let k-itemset denote 

an itemset of k items. At level 1, all frequent 1-itemsets are found. At level 2, all frequent 
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2-itemsets are found and so on.  

If an itemset is not frequent at level k-1, it is discarded, as any addition of items to the set 

cannot be frequent (this is called downward closure property).  

At level k, all potentially frequent itemsets (candidate itemsets) are generated from frequent 

itemsets at level k-1. To determine which of the candidate itemsets are actually frequent, 

the algorithm goes through the data to count their supports.  

After all frequent itemsets are found, it generates rules, which is relatively simple.  

 

Mining association rules for classification from a continuous data set is done by taking a 

classification data set is in the form of relational table, which is described by a set of distinct 

attributes (discrete and continuous). A point that should be noted here is that association 

algorithm cannot be performed on a continuous dataset. So we first discretize each 

continuous attributes. After discretization, we can then transform each data record to a set 

of (attribute, value) pair of an item [3] 

To generate all rules for classification we also need to make some modifications to the 

Apriori algorithm because a dataset for classification has a fixed target, the class attribute. 

Thus we only need to generate those rules X belonging to Ci, where Ci is a possible class. 

We call such association rules Class Association rules (CARs). 

X            ci where ci is a possible class. Three classes were defined for the data for each 

engineering property, friction as well as hardness. Class 1 was defined as hardness of a 

material better than the other, class 2 was defined as equal or not and class 3 was defined 

as hardness of compound A better than twice of hardness of compound B. Similarly three 
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classes for friction data set were also defined. After running the algorithm on the data set 

only class 1 attributes gave good results. There were three results found for hardness and 

six for friction coefficient, three best rules were selected for friction. The total six rules 

have been presented below with their proper explanation. Also the terms confidence, 

support and lift are to understood before exploring the rules. By confidence we mean 

conditional accuracy, hence more confidence the better is the accuracy of the rule, at the 

same time rules with less accuracy can also be useful insights as they can reveal the territory 

which has never been explored before. By support we mean the count of number of results 

which support the rule, the minimum the support the better as we don’t want our rules to 

be biased and lift is the measure of correlation, if lift is greater than 1 it has positive 

correlation and if it is below than 1 it has negative correlation. We have targeted results 

that have positive correlation so the more the lift is the better the results is. 

Rule 1  

Rule 1 

A>B (Specific Heat) yes 

B>A (Molar Volume anion) yes 

B>A (Atomic Radius) yes 

B>A (density of anion) yes 

B>A (pseudo potential core radii) yes 

Hardness True 
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Rule 1. (Continued) 

Confidence  84% 

Support 0.2432 

Lift 3.4539 

 

This rule states that if we are comparing two compounds let’s say A and B and if A has a 

better specific heat than compound B and B has better molar volume of anionic part and 

better atomic radius, density of anion and pseudo potential core radii than the hardness of 

A will be better than B 84% of the time with a support of .2432 and lift as 3.4539 

Rule 2 

Rule 2 

A>B (First Ionization Potential) yes 

B>A (Molar Volume anion) yes 

B>A (Atomic Radius of cation) yes 

B>A (Covalent radius) yes 

B>A (pseudo potential core radii cation) yes 

Hardness (A > B) True 

Confidence 92% 
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Rule 2 (Continued) 

Support 0.2432 

Lift 3.7797 

 

This rule states that if we are comparing two compounds let’s say A and B and if A has a 

better First Ionization Potential than compound B and B has better molar volume of anionic 

part and better atomic radius of cation, covalent radius and pseudo potential core radii sum 

of cation than the hardness of A will be better than B 92% of the time with a support of 

.2432 and lift as 3.7797. 

 These two above rules have very high confidence and lift values and at the same time 

reasonably low support. 

Rule 3 

Rule 3 

A>B (First Ionization Potential) yes 

A>B  (Specific heat) yes 

B>A (Atomic Radius of cation) yes 

B>A (pseudo potential core radii ) yes 

Hardness (A > B) True 
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Rule 3 (Continued) 

Confidence 81% 

Support 0.4324 

Lift 1.873 

 

This rule states that if we are comparing two compounds let’s say A and B and if A has a 

better First Ionization Potential and specific heat than compound B and B has better atomic 

radius, and pseudo potential core radii sum than the hardness of A will be better than B 

81% of the time with a support of .4324 and lift as 1.873. 

Further let’s explore the top three rules of friction. For friction rules the desired result is 

minimum friction hence the following rules also indicate the combinations in the similar 

direction. 

Rule 4 

Rule 4 

A<B (Melting Point anion) yes 

A<B (Boiling Point anion) yes 

A<B (pseudo potential core radii anion) yes 

Friction (A<B) yes 
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Rule 4 (Continued) 

Confidence 71% 

Support 0.575 

Lift 1.2347 

 

This rule states that if we are comparing two compounds let’s say A and B and if A’s 

anionic part of the compound has smaller melting point, smaller boiling point and smaller 

pseudo potential core radii sum than compound B’s anion than the friction of A will be less 

than B 71% of the time with a support of .575 and lift as 1.2347. 

Rule 5 

Rule 5 

A<B (Density of anion) yes 

A<B (pseudo potential core radii anion) yes 

Friction (A<B) yes 

Confidence 71% 

Support 0.57 

Lift 1.2456 
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This rule states that if we are comparing two compounds let’s say A and B and if A’s 

anionic part of the compound has smaller density and smaller pseudo potential core radii 

sum than compound B’s anion than the friction of A will be less than B 71% of the time 

with a support of .57 and lift as 1.2456. 

 

Rule 6 

Rule 6 

A<B (Boiling point) yes 

A<B (pseudo potential core radii anion) yes 

Friction (A<B) True 

Confidence 71% 

Support 0.59 

Lift 1.19730 

 

This rule states that if we are comparing two compounds let’s say A and B and if A’s 

anionic part of the compound has smaller boiling point and smaller pseudo potential core 

radii sum than compound B’s anion than the friction of A will be less than B 71% of the 

time with a support of .59 and lift as 1.19730. 
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To demonstrate all the rules in a graphic form and showing the importance of each is what 

has been demonstrated in the following figure. 

 

Fig 5.2 All nine rules demonstrated in a graphic form placed on a confidence vs. support 

two dimension plane. The more highlighted points are the better is the value of lift and 

hence the better is the rule.  

 

If the numeric predictions are over fitting then to get some information out of such data 

where the independent variables are higher than the data points, we can perform 

classification algorithms as they provide the little nuggets of insights help in having a 

complete predictive model.  
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5.5 Depicting the above results in a decision making process 

After coming up with the classification rules and applying it to the virtual database, a 

dataset was derived showing each compound’s comparison with the other and describing 

which one is better and why? So for each comparison the dataset describes which rules 

make one compound better than the other.  This data can then be arranged in a flow chart 

form with various decision-making algorithms and has been explored below. 

Taking nine compounds from our dataset and after constructing an excel sheet by 

comparing all 9 compounds with each other and describing for each set how one is better 

than other has been described in the following table using the classification rules. The chart 

above the diagonal line shows how the column compounds are better than the compounds 

in the row and the chart below the diagonal line shows how the compounds in the row are 

better than the compounds in the column. For example we have explored how AlF3 is better 

than Al2O3 and how Al2O3 is better than AlF3 and have then made a decision. 

Table 3:  Comparing each of these nine compounds with another to see what rules of 

classification makes one better than the other.  

 

By simply depicting the above results in the flow chart form we get the following figure. 

In this chart we can see that SiF4 is better than all the other compounds and how it is better 

Compound AlF3 Al2Se3 AlAs Al2Te3 Al2S3 AlCl3 AlBr3 SiF4 SiSe2 

AlF3 - 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 3 3 none 1,2,3,4,5,6 

Al2Se3 none - 4,5,6 none None none none none none 

AlAs none none - 3 None none none none none 

Al2Te3 none none 4,5,6 - None none none none none 

Al2S3 none 3 1,2,3,4,5,6 3 - none none none none 

AlCl3 none 1,2,3,4,5,6 4,5,6 1,2,3,4,5,6 4,5,6 - 3 none 1,2,3,4,5,6 

AlBr3 none 1,2,3,4,5,6 4,5,6 1,2,3,4,5,6 4,5,6 none - none 1,2,3,4,5,6 

SiF4 5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,5,6 1,2,3,5,6 - 1,2,3,4,5,6 

SiSe2 none 5,6 5,6 5,6 none none none none - 
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than AlF3 (the next best compound with minimum friction and maximum hardness) has 

been specifically mentioned. For example SiF4 is better than AlF3 in terms of friction rule 

5 and 6, in terms of hardness they cannot be differentiated. So by using this simple 

technique one can evaluate all 135 compounds after comparing each compound and 

formulating an excel sheet and then running an algorithm for the above mentioned analysis. 

Also we can see in the chart that AlAs and Al2Te3 are contradicting each other one is better 

than other in some respect, in such cases a further understanding of decision criteria and 

preference setting has to be done by the decision maker. But in the following case we are 

getting a straight forward answer of a best compound out of the lot of 9 compounds which 

is SiF4. 

 

Fig 5.3 The flow chart depicting the results of comparison based on the classification 

rules.   
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Also the comparison of the 9 compounds highlighted in chapter 4 which have been selected 

as prospective compounds for wear resistance application were diagnosed by the rules we 

developed through apriori.  

Table 4:  Comparing each of these nine highlighted compounds with another to see what 

rules of classification makes one better than the other.  

Compound SiF4 SnF4 ZrF4 TiF4 MoF4 VF5 BaO PbO AgO 

SiF4 - 1,3,5 1,3,4,5,6 3,4,5,6 3,4,5,6 4,5,6 1,2,3,4,5,6 1,2,3,5,6 1,2,3,4,5,6 

SnF4 none - 4,5,6 4,6 4,5,6 4,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

ZrF4 none none - none none none 1,2,3,4,5,6 1,2,3,5,6 1,2,3,4,5,6 

TiF4 none none 1,4,5,6 - 4,5,6 none 1,2,3,4,5,6 1,2,3,5,6 1,2,3,4,5,6 

MoF4 none none none none - none 2,3 1,2,3,5,6 1,2,3,4,5,6 

VF5 none none 1,3,4,5,6 3,4,6 1,3,4,5,6 - 1,2,3,4,5,6 1,2,3,5,6 1,2,3,4,5,6 

BaO none none none none none none - none none 

PbO none none none none none none none - 4,6 

AgO none none none none none none none none - 
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Fig 5.4 The flow chart depicting the results of comparison based on the classification 

rules.   

SiF4 turned out to be best amongst the 9 prospective compounds and almost all the results 

were in consistency with each other.  

As can be seen in the next figure, with the help of classification rules we can easily arrange 

the materials in their order of importance as it would not have been possible by the previous 

method because to decide tradeoffs in this case was difficult. Again as described in the 

previous example to decide tradeoffs between MoF4 and ZrF4 is not possible through rules 

as they are incomparable. BaO, PbO and AgO lie at the bottom as when friction and 
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hardness combination is looked on they are the lowest. These results indicate that through 

both the methods used for small data sizes, we can check whether the prediction modelling 

is overfitting or not as it is based on the transformed space of the dataset whereas the other 

method uses original feature space. Given the results are same, hence there is a high 

possibility of no overfitting in the prediction model.  

 

Fig 5.5 The result comparison of both the methods. Figure on the left is the result of a 

prediction model whereas the result on the right is a result of the classification rules.  

 

There are several properties that come into factor when we analyze wear resistance of a 

material like friction coefficient, hardness etc. For a given set of materials all these 

properties are analyzed and the selection of a best material amongst those is done. Selection 

of the best material involves ranking of materials. There are different Multi Criteria 

Decision Analysis techniques that are used for the ranking of the materials in the given 
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data set. The above description shows how it can be achieved in one way. Hence the next 

student who might join the research group can further explore this. This aspect has been 

considered for future work and is not fully explored in this part of the thesis. But realizing 

how the rules can help in making a well-informed decision in material selection using this 

technique was the intension behind explaining the methodology. 
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CHAPTER 6 

CONCLUSIONS 

This thesis developed a new hybrid informatics approach for identifying target materials 

for further exploration.  This approach connected dimensionality reduction, attribute 

selection, prediction and association mining approaches, utilizing and linking aspects of 

each for a unified design strategy.  We applied this approach to ceramic wear resistant 

materials for improving hardness and friction coefficient to expand their applicability to 

high temperature environments.  The particular challenges addressed through this approach 

include small existing knowledge base and high data uncertainty. 

 

In this work, the knowledge base of binary ceramics for wear applications has been increase 

by five times what was previously known.  This increase is particularly significant given 

the difficulty associated with obtaining the wear data, which has resulted in the small data 

knowledge base.  Further, the work emphasized modeling robustness over accuracy 

whenever the trade-off was needed.  The reason for this was to ensure data was not being 

over-fit.  This challenge arises due to the small data that was input.  By using the 

comparison of two different approaches, one data driven and the other working on the 

transformed dataset and by getting similar results we have ensured that any materials that 

we identify as having promising characteristics are highly likely to have those 

characteristics.  By avoiding over-fitting or sensitivity to outliers and selecting materials 

on extracted physics, we have enhanced the robustness of our material selections.  The 

usage of decision theory was applied and described in this thesis, and this represents a 
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promising area to be further coupled with the hybrid methodology developed and utilized 

here. 

 

Suggestions for future work are to increase the system complexity by introducing multi-

objective functions, such as surface tension, melting point etc., as they also play an 

important role in affecting the wear resistance of a material. Also developing efficient 

qualitative multi-attribute decision theory algorithms to find optimal choice amongst the 

expanded data. These methodologies are totally new in the field of materials science. The 

models, data and experiments, some of which are discrete and some are based on 

differential equations; can use these techniques to interpret the model.  
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